Haar随机态中的马尔可夫间隙与束缚纠缠
近日, bet36体育投注:物理研究所范桁团队研究了Haar随机态中的马尔可夫间隙与束缚纠缠。相关论文于2026年1月5日发表在《物理评论A》杂志上。
束缚纠缠指的是那些无法被提取为最大纠缠态,因此不能直接用于许多量子信息处理协议的纠缠态。
研究组发现了束缚纠缠与马尔科夫间隙之间的关系,该间隙是通过纠缠楔截面在全息理论中引入的,并与部分马尔科夫恢复问题的保真度相关。研究组证明了束缚纠缠态必须具有非零的马尔科夫间隙。相反,对于足够大的系统,具有微弱非零马尔科夫间隙的状态通常具有束缚纠缠或可分离的边缘态,其中纠缠是不可提取的。此外,这意味着从束缚纠缠到可分离状态的转变源于具有微弱非零马尔科夫间隙的状态的性质,从全息的角度来看,这可能与非微扰效应对偶。该研究结果为马尔科夫间隙的研究提供了启示,并增强了量子信息的跨学科应用。
附:英文原文
Title: Markov gap and bound entanglement in Haar-random states
Author: Tian-Ren Jin, Shang Liu, Heng Fan
Issue&Volume: 2026/01/05
Abstract: Bound entanglement refers to entangled states that cannot be distilled into maximally entangled states and therefore cannot directly be used in many quantum information processing protocols. We identify a relationship between bound entanglement and the Markov gap, which is introduced within holography via the entanglement wedge cross section and is related to the fidelity of the partial Markov recovery problem. We prove that a bound entangled state must have a nonzero Markov gap. Conversely, for sufficiently large systems, a state with a weakly nonzero Markov gap typically has a bound entangled or separable marginal state, where entanglement is undistillable. Furthermore, this implies that the transition from a bound entangled to a separable state originates from the properties of states with a weakly nonzero Markov gap, which may be dual to nonperturbative effects from a holographic perspective. Our results shed light on the investigation of the Markov gap and enhance interdisciplinary applications of quantum information.
DOI: 10.1103/7fhc-hv9x
Source: https://journals.aps.org/pra/abstract/10.1103/7fhc-hv9x
